Tal Shnitzer

I am a postdoctoral researcher at CSAIL MIT in the Geometric Data Processing Group with Prof. Justin Solomon. I received my PhD in 2020 from the faculty of Electrical and Computer Engineering at the Technion, under the supervision of Prof. Ronen Talmon. In 2013, I received my BSc in Biomedical Engineering and in Electrical and Computer Engineering from the Technion.

My research focuses on geometric methods for high-dimensional data analysis, sensor fusion and biomedical signal processing.

Email  /  CV  /  Google Scholar  /  Github

profile photo
Publications
Few-Sample Feature Selection via Feature Manifold Learning
David Cohen, Tal Shnitzer, Yuval Kluger, Ronen Talmon
ICML, 2023
arXiv / paper / code

Spatiotemporal analysis using riemannian composition of diffusion operators
Tal Shnitzer, Hau-Tieng Wu, Ronen Talmon
ACHA Elsevier, 2023
arXiv / code

Log-Euclidean signatures for intrinsic distances between unaligned datasets
Tal Shnitzer, Mikhail Yurochkin, Kristjan Greenewald, Justin Solomon
ICML, 2022
arXiv / paper / code

Graph of graphs analysis for multiplexed data with application to imaging mass cytometry
Ya-Wei Lin, Tal Shnitzer, Ronen Talmon, Franz Villarroel-Espindola, Shruti Desai, Kurt Schalper, Yuval Kluger
PLoS computational biology, 2021
bioRXiv / paper / code

Diffusion maps kalman filter for a class of systems with gradient flows
Tal Shnitzer, Ronen Talmon, Jean-Jacques Slotine
IEEE TSP, 2020
arXiv / paper / code

Layer- and cell-specific recruitment dynamics during epileptic seizures in vivo
Fadi Aeed Tal Shnitzer, Ronen Talmon, Yitzhak Schiller
Annals of Neurology, 2019
paper / code

Diffusion maps particle filter
Lukas Forster, Alexander Schmidt, Walter Kellermann, Tal Shnitzer, Ronen Talmon
Eusipco, 2019
arXiv / paper

Recovering hidden components in multimodal data with composite diffusion operators
Tal Shnitzer, Mirela Ben-Chen, Leonidas Guibas, Ronen Talmon, Hau-Tieng Wu
SIAM Journal on Mathematics of Data Science, 2019
arXiv / paper / code

Alternating diffusion maps for dementia severity assessment
Tal Shnitzer, Maya Rapaport, Noga Cohen, Natalya Yarovinsky, Ronen Talmon, Judith Aharon-Peretz
ICASSP, 2017
arXiv / paper

Direction modulation of muscle synergies in a hand-reaching task
Sharon Israely, Gerry Leisman, Chay Machluf, Tal Shnitzer, Eli Carmeli
IEEE TNSRE, 2017
arXiv / paper

Manifold learning with contracting observers for data-driven time-series analysis
Tal Shnitzer, Ronen Talmon, Jean-Jacques Slotine
IEEE TSP, 2016
arXiv / paper / code

Book Chapters
Manifold learning for data-driven dynamical system analysis
Tal Shnitzer, Ronen Talmon, Jean-Jacques Slotine
The Koopman Operator in Systems and Control, 2020
chapter / code

Diffusion operators for multimodal data analysis
Tal Shnitzer, Roy Lederman, Gi-Ren Liu, Ronen Talmon, Hau-Tieng Wu
Handbook of Numerical Analysis v20, 2019
chapter



This website is based on Jon Barron's template (source code)